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SOLAR CELL SURFACE DEFECT DETECTION BASED 

ON IMPROVED YOLO V5 

G. SRUJAN KUMAR, PULUGU VENKATESH REDDY 

Abstract: This study introduces an advanced Solar Cell Surface Defect Detection method utilizing an improved 

YOLO v5, FaserRCNN and YOLOV6 algorithms. Addressing the challenges posed by complex image backgrounds, 

variable defect morphology, and large-scale differences, our approach incorporates deformable convolution in the 

CSP module for adaptive learning scale and perceptual field size. The integration of the ECA-Net attention mechanism 

enhances feature extraction capabilities, while the addition of a tiny defect prediction head improves detection 

accuracy across different scales. Optimization techniques, including Mosaic and MixUp data augmentation, K-

meansCC clustering anchor box algorithm, and the CIOU loss function, contribute to superior model performance. 

Experimental results demonstrate an impressive accuracy of 97.14% for YOLOv5, outperforming Faster R-CNN's 

90.66%. Further extension studies on YOLOv6, YOLOv7, and YOLOv8 reveal YOLOv6 as the most effective, 

achieving a remarkable accuracy of 98.28%. This research establishes a robust solution for solar cell defect detection, 

showcasing the efficacy of our proposed algorithm for industrial applications. 

Index Terms -Deep learning, YOLO v5, solar cell, defect detection, EL image, YoloV6 with VGG16 

INTRODUCTION 

At the present stage, under the dual pressure of 

environmental pollution and the increasingly 

prominent traditional energy crisis, people have turned 

their attention to the development and utilization of 

new energy sources [1]. Due to the advantages of a 

wide range of applications, low cost, safety, and 

reliability, solar energy has become one of the 

mainstream new energy sources with high-speed 

development. Solar panels are important components 

of photovoltaic power generation, silicon crystal plates 

are fragile and fragile, and defects are easily produced 

by improper operation in production and installation 

[2], these defects cannot only affect the efficiency of 

solar cell power generation but also seriously threaten 

people’s life and property safety [3].  
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Therefore, the study of solar cell defect detection 

methods is of great significance [4]. 

Electroluminescence (EL) imaging involves injecting 

a forward bias current into the PV module to put it in 

an excited state and then using a silicon charge-

coupled device (CCD) or an InGaAs camera to capture 

the infrared light generated by the solar cell in the 

excited state for imaging. With the advantages of 

nondestructive and noncontact, electroluminescence 

imaging cannot only effectively detect tiny cracks, 

finger interruption, and other process defects that 

cannot be observed by conventional imaging systems, 

but also avoid blurring of imaging caused by lateral 

thermal propagation [5], [6]. Based on its excellent 

performance, electroluminescence imaging has 

become the main way of solar cell defect detection. 

Develop an advanced Solar Cell Surface Defect 

Detection system by enhancing the YOLO v5 

algorithm. Aimed at surpassing existing methods like 

Faster R-CNN, and extensions YOLOv6, YOLOv7, 

and YOLOv8, the objective is to optimize accuracy. 

YOLOv6, exhibiting superior performance, is selected 

for extension, ensuring precise and efficient detection 

of defects on solar cell surfaces. 

Current solar cell defect detection methods lack 

efficiency in handling complex image backgrounds, 

variable defect morphologies, and large-scale 

differences. Existing algorithms like YOLO v5 and 

Faster R-CNN face challenges. This research 

addresses these issues, aiming to enhance accuracy 

and adaptability for robust solar cell surface defect 

detection. 

Traditional visual inspection requires operation and 

maintenance engineers to carry instruments to inspect 

solar cells one by one, which is a high workload, low 

efficiency, and overly dependent on the subjective 

experience of O&M engineers, and the inspection 

accuracy cannot be guaranteed. To automatically and 

accurately identify defects in images, researchers have 

proposed traditionalcomputer vision based on manual 

feature extraction and classifiers [7]–[10]. Tsai et al. 

proposed a method for detecting defects in polysilicon 

solar cells based on the Fourier image reconstruction 

technique, which removes possible defects in EL 

images by setting the frequency components of line 

and strip defects to 0 [11]. Demant et al. proposed a 

classification recognition method based on local 

descriptors and support vector machines, which 

achieves effective detection of photoluminescence 

(PL) images and infrared (IR) images of small-grain 

silicon wafers [7]. However, traditional computer 

vision relies on manual extraction of descriptors, 

which requires a large number of parameter 

adjustments and has poor robustness and 

generalization capabilities. 

1. LITERATURE SURVEY 

[12] In this they utilize deep convolutional neural 

networks (CNN) for visual defect detection, 

employing both supervised and unsupervised learning 

approaches, with a focus on overcoming challenges in 

model training and achieving high detection accuracy. 

Potential drawbacks include complex model training, 

reliance on large labeled datasets, and challenges in 

adapting to diverse defect types, requiring continuous 

optimization for optimal performance. Algorithmic 
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challenges involve adapting to varied defect 

characteristics, application challenges in real-world 

scenarios, and data processing challenges related to 

handling diverse and unstructured datasets. Deep 

CNN-based defect detection presents a promising 

avenue for automated optical inspection, yet 

challenges persist in algorithmic adaptation, real-

world applications, and data processing. Addressing 

these will further enhance industry and academic 

adoption. 

[13] They introduce a cross-convolutional-layer 

pooling, our method leverages two consecutive 

convolutional layers for image representation, 

demonstrating superior performance in visual 

classification tasks and promising results in image 

retrieval. The method may face challenges in 

computational complexity, especially in the second 

scheme relying on densely sampled image regions. 

Additionally, fine-tuning for specific tasks might be 

required, impacting its general applicability. The 

approach may struggle with computational demands, 

particularly in the second scheme. Fine-tuning for 

diverse tasks could be necessary, potentially limiting 

the method's efficiency and ease of implementation in 

certain contexts. Our cross-convolutional-layer 

pooling method offers a novel approach to image 

representation, excelling in discriminating visual 

patterns. Despite computational challenges, it 

outperforms existing methods in various tasks, 

showcasing its potential in image recognition. 

[14]This study introduces a methodology for remote 

sensing image classification using deeply local 

descriptors obtained from different scales of a CNN. 

Hellinger kernel, PCA, and two aggregation strategies 

enhance classification performance. Potential 

drawbacks include increased computational 

complexity due to the extraction of convolutional 

features from multiple scales and the application of 

Hellinger kernel and PCA, leading to higher 

processing requirements. Challenges may arise in 

handling diverse remote sensing scenarios, and the 

proposed methodology may face limitations in cases 

with insufficient training data or variations in image 

quality and characteristics. The presented approach 

leveraging deeply local descriptors, Hellinger kernel, 

PCA, and novel aggregation strategies demonstrates 

enhanced remote sensing image classification 

performance. Addressing computational demands and 

handling diverse scenarios remains a focus for future 

improvements. 

[15]The paper introduces a hybrid CNN and RNN 

framework for sentence classification. Initial word 

embeddings are trained using an unsupervised neural 

language model, fine-tuned with deep learning, and 

combined with feature maps from a convolutional 

layer and long-term dependencies from LSTM. 

Despite achieving outstanding results, the framework 

may require careful hyperparameter tuning. The 

combination of CNN and RNN introduces complexity, 

potentially leading to increased computational 

demands and longer training times. The proposed 

system's reliance on pre-trained parameters and the 

need for hyperparameter tuning may limit its 

adaptability to different datasets. Handling domain-

specific nuances and optimizing for diverse tasks 

could pose challenges. The hybrid CNN-RNN 

framework effectively balances capturing local 
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information and long-term dependencies. Despite 

challenges in parameter tuning, it outperforms existing 

approaches in sentiment analysis, showcasing 

efficiency and competitive accuracy across multiple 

benchmarks. 

[16]Introducing a novel text structure feature extractor 

combining a Text Structure Component Detector layer 

and a residual network, optimizing feature extraction 

for both Chinese text detection and recognition, 

enhancing end-to-end system consistency. Potential 

drawbacks may include increased computational 

complexity due to the integration of specialized layers, 

requiring careful optimization. Additionally, the 

effectiveness across diverse datasets and languages 

may need further validation. Challenges may arise in 

adapting the proposed system to handle variations in 

text fonts and styles. Ensuring robustness across 

different scene conditions and text complexities 

remains a potential limitation for real-world 

applications. The presented text structure feature 

extractor demonstrates improved performance in both 

text detection and recognition, offering a unified 

solution for Chinese scene text extraction. Challenges 

in scalability and generalizability should be addressed 

for broader applicability. 

2. METHODOLOGY 

i) Proposed Work: 

This study introduces an advanced framework for 

solar cell surface defect detection by leveraging an 

improved version of YOLOv5. Building upon the 

success of YOLOv5, which outperformed traditional 

methods like Faster R-CNN, the proposed system 

underwent an extension phase evaluating YOLOv6, 

v7, and v8. Among these, YOLOv6 exhibited superior 

performance over YOLOv7 and YOLOv8, leading to 

its selection as the extension model, primarily due to 

its remarkable accuracy. The system seamlessly 

integrates state-of-the-art deep learning techniques, 

enhancing both precision and efficiency in the 

detection of defects on solar cell surfaces. This 

research significantly contributes to advancing 

computer vision applications within the renewable 

energy sector, providing an effective and reliable 

solution for identifying surface defects in solar cells. 

This capability is crucial for ensuring the overall 

quality and performance of solar energy systems, 

emphasizing the importance of adopting cutting-edge 

technologies for robust defect detection and quality 

assurance in the renewable energy domain. 

ii) System Architecture: 

The proposed solar cell defect detection system is built 

upon an enhanced YOLO v5 architecture tailored for 

identifying three distinct surface defects: cracks, black 

core, and finger interruption. The core improvement 

lies in the integration of deformable convolution 

within the CSP module, enabling effective extraction 

of defects of varying sizes and shapes. Additionally, 

the ECA-Net attention module is incorporated into the 

Neck segment to enhance detection performance 

through cross-channel interaction. Model structure 

optimization and the inclusion of a prediction head 

contribute to four-scale feature defect detection, 

notably improving accuracy for detecting tiny defects. 

While the primary focus is on the upgraded YOLO v5 

model, the authors acknowledge the absence of 
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experimentation with advanced YOLO versions (6, 7, 

and 8). To address this, YOLOv6 is trained on the 

same dataset as an extension, demonstrating superior 

accuracy compared to the optimized YOLO v5. The 

system achieves real-time monitoring capabilities, 

making it suitable for deployment on mobile devices. 

Objective evaluation through ablation experiments 

and comparisons with mainstream methods validates 

the enhanced model's efficacy in improving solar cell 

defect detection accuracy without sacrificing real-time 

processing capabilities. 

 

Fig 1 System Architecture 

iii) Dataset Collection: 

The solar cell EL image dataset, comprising 2534 

images with dimensions of 300 × 300, serves as the 

foundation for training the proposed defect detection 

system. Through random allocation, the dataset is split 

into a training set consisting of 2281 images and a test 

set comprising 253 images, maintaining a 9:1 ratio. 

The labeling process utilizes the LabelImg software, 

facilitating the annotation of defect locations and 

categories in YOLO format. Three distinct defect 

categories, namely crack, finger interruption, and 

black core, are labeled using rectangular bounding 

boxes encompassing the defects, effectively indicating 

both the specific location and category of each defect 

within the solar cell EL images. The annotations are 

saved as XML files adhering to the PASCAL VOC 

format, ensuring compatibility with the YOLO model. 

This meticulous labeling methodology establishes a 

robust foundation for training and evaluating the 

enhanced YOLO v5 model, contributing to its 

accuracy in detecting and categorizing solar cell 

surface defects. 

 

Fig 2 Dataset rows & columns 

iv) Image processing: 

In the image processing pipeline for solar cell surface 

defect detection, the preprocessing steps of 

normalizing and shuffling images are followed by 

feature selection to optimize the input data for the 

proposed improved YOLO v5 model. Feature 

selection involves extracting relevant information 

from the images to enhance the model's ability to 

discern key patterns associated with cracks, black 

cores, and finger interruptions. 

During feature selection, the deformable convolution 

integrated into the CSP module enables effective 

extraction of defects of varying sizes and shapes. This 

ensures that the model can capture intricate details 
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present in the solar cell surface, contributing to 

improved detection accuracy. Additionally, the 

introduction of the ECA-Net attention module in the 

Neck part fosters cross-channel interaction, allowing 

the model to focus on crucial features and patterns 

while disregarding irrelevant information. 

The model structure optimization and the 

incorporation of a prediction head further contribute to 

four-scale feature defect detection, particularly 

enhancing the accuracy in identifying tiny defects. 

These comprehensive image processing techniques 

collectively enhance the discriminative power of the 

proposed YOLO v5 model, as demonstrated through 

objective evaluations and comparisons with 

mainstream methods. The subsequent training and 

extension to YOLOv6 on the same dataset substantiate 

the efficacy of the proposed image processing 

techniques in achieving higher accuracy in solar cell 

defect detection. 

 

Fig 3 Processed sample image 

v) Training & Testing: 

In the solar cell defect detection project, the dataset 

comprising 2534 images with labels for cracks, black 

cores, and finger interruptions is split into a training 

set (2281 images) and a test set (253 images) using a 

9:1 ratio. This division ensures that the model is 

trained on a substantial portion of the data while 

preserving a separate subset for evaluating its 

performance. 

For training, the improved YOLO v5 model is 

optimized using the training set. The deformable 

convolution in the CSP module, ECA-Net attention 

module in the Neck part, and the model structure 

adjustments contribute to effective feature extraction 

and four-scale defect detection. The training involves 

iteratively adjusting the model's weights based on the 

discrepancies between predicted and actual defect 

locations and categories, optimizing its ability to 

accurately identify solar cell surface defects. 

Testing is conducted on the reserved test set to 

evaluate the model's generalization capabilities. A 

dedicated function calculates metrics scores such as 

precision, recall, and F1-score, providing quantitative 

insights into the model's performance. This metric 

calculation enables a thorough assessment of the 

model's accuracy, especially in the detection of cracks, 

black cores, and finger interruptions. The results from 

testing, along with comparisons to mainstream 

methods, validate the model's effectiveness in 

enhancing solar cell defect detection while ensuring 

real-time processing capabilities. 

vi) Algorithms: 

Faster R-CNN: 
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Faster R-CNN short for “Faster Region-Convolutional 

Neural Network” is a state-of-the-art object detection 

architecture of the R-CNN family, introduced by 

Shaoqing Ren, Kaiming He, Ross B. Girshick, and 

Jian Sun in 2015. The primary goal of the Faster R-

CNN network is to develop a unified architecture that 

not only detects objects within an image but also 

locates the objects precisely in the image. It combines 

the benefits of deep learning, convolutional neural 

networks (CNNs), and region proposal 

networks(RPNs) into a cohesive network, which 

significantly improves the speed and accuracy of the 

model. 

Faster R-CNN architecture consists of two 

components: 

1. Region Proposal Network (RPN) 

2. Fast R-CNN detector 

 

Fig 4 Faster R-CNN 

Before discussing the RPN and Fast R-CNN detector, 

Let’s understand the Shared Convolutional Layers that 

works as the backbone in Faster R-CNN architecture. 

It is the common CNN layer used for both RPN and 

Fast R-CNN detector as shown in the figure. 

YoloV5 with CA Attention: 

YoloV5, or You Only Look One-level, undergoes a 

significant enhancement with the integration of the 

Channel Attention (CA) mechanism, resulting in an 

augmented version adept at refined object detection. 

The CA Attention dynamically prioritizes channel-

wise information, allowing the model to focus on 

crucial features. This refinement proves instrumental 

in elevating the model's capacity to capture intricate 

context and details within the input data. The CA 

Attention mechanism plays a pivotal role in scenarios 

characterized by complex backgrounds or overlapping 

objects, where discerning relevant features is 

challenging. By dynamically weighting channel-wise 

information, YoloV5 with CA Attention ensures 

robust and accurate object localization and 

classification. This augmentation proves especially 

valuable in improving the model's overall 

performance, making it more resilient and effective in 

handling diverse and challenging object detection 

tasks. 

 

Fig 5 YOLOV5 with CA attention 
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Extension YoloV6 with VGG16: 

The extended YoloV6 integrates the VGG16 

architecture, strategically blending YOLO's efficiency 

with the deep feature extraction capabilities of 

VGG16. Leveraging VGG16's multiple convolutional 

layers, YoloV6 excels in capturing intricate 

hierarchical features, significantly enhancing the 

accuracy of object recognition. This fusion harnesses 

the strengths of both architectures, adapting the YOLO 

framework to exploit VGG16's robust feature 

representation. The result is a powerful and versatile 

model that excels in object detection tasks, particularly 

in scenarios laden with diverse and challenging visual 

elements. 

YoloV6, with the incorporation of VGG16, represents 

a synergy that extends the capabilities of the YOLO 

family. This collaborative architecture facilitates 

improved performance, making the model adept at 

precise object detection across a spectrum of 

applications. The amalgamation of YOLO and 

VGG16 in YoloV6 establishes a potent framework, 

marking a significant advancement in the field of 

computer vision and reinforcing the model's suitability 

for addressing the complexities of various real-world 

object detection challenges. 

 

Fig 6 Extension YOLOV6 with VGG16 

3. EXPERIMENTAL RESULTS 

Confusion Matrix: 

A confusion matrix presents a table layout of the 

different outcomes of the prediction and results of a 

classification problem and helps visualize its 

outcomes. It plots a table of all the predicted and actual 

values of a classifier. 

 

FasterRCNN confusion matrix& Performance 

Evaluation: 
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YoloV5 with CA Attention confusion matrix& 

Performance Evaluation: 

 

Extension YoloV6 with VGG16 confusion matrix& 

Performance Evaluation: 

 

Accuracy: The accuracy of a test is its ability to 

differentiate the patient and healthy cases correctly. To 

estimate the accuracy of a test, we should calculate the 

proportion of true positive and true negative in all 

evaluated cases. Mathematically, this can be stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 

 

 

Fig 7 Accuracy graph 

Precision: Precision measures the proportion of 

properly categorized occurrences or samples among 

the positives. As a result, the accuracy may be 

calculated using the following formula: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 
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Fig 8 Precision graph 

Recall:Recall is a machine learning metric that 

surveys a model's capacity to recognize all pertinent 

examples of a particular class. It is the proportion of 

appropriately anticipated positive perceptions to add 

up to real up-sides, which gives data about a model's 

capacity to catch instances of a specific class. 

 

 

Fig 9 Recall graph 

F1-Score:The F1 score is a machine learning 

evaluation measurement that evaluates the precision of 

a model. It consolidates a model's precision and review 

scores. The precision measurement computes how 

often a model anticipated accurately over the full 

dataset. 

 

 

Fig 10 F1-Score graph 

 

Fig 11 Performance Table of all Algorithms 
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Fig 12 Comparison graph 

YOLOv5 achieved 97.14% accuracy. YOLOv6, v7, 

and v8 were compared, with YOLOv6 outperforming 

v7 and v8, securing the highest accuracy at 98.28%. 

 

 

Fig 13 Upload input image page 

 

Fig 14  Prediction Result 

Predicted as : Mono 

Defect Probability : 0.35083574 

4. CONCLUSION 

In conclusion, our research presents a state-of-the-art 

Solar Cell Surface Defect Detection system based on 

an improved YOLO v5 algorithm. The devised 

framework effectively addresses the complexities 

associated with diverse image backgrounds, variable 

defect morphologies, and significant scale differences 

in solar cell inspection. Through the incorporation of 

deformable convolution, ECA-Net attention 

mechanism, and a tiny defect prediction head, our 

model achieves exceptional detection accuracy across 

various scales. The proposed optimizations, including 

Mosaic and MixUp data augmentation, K-meansCC 

clustering anchor box algorithm, and the CIOU loss 

function, collectively contribute to the superior 

performance of the YOLOv5 algorithm. Comparative 

analysis showcases YOLOv6 as the most accurate 

extension with an impressive 98.28% accuracy. This 

research not only advances solar cell defect detection 

techniques but also provides a robust solution for real-

world industrial applications, demonstrating the 

effectiveness and versatility of our proposed system. 

5. FUTURE SCOPE 

The future scope of this research involves the 

exploration of real-time implementation, leveraging 

edge computing for enhanced processing speed. 

Integration with emerging technologies like deep 

reinforcement learning could further refine defect 

detection accuracy. Additionally, adapting the 

proposed system for other domains beyond solar cells, 

such as quality control in manufacturing, presents an 

avenue for broader industrial applications. Continuous 

refinement and adaptation to evolving technologies 

will contribute to the system's scalability and efficacy 

in diverse scenarios. 
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